
Chapter 3

Dynamic Programming

Alignment Accuracy
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3.1 Introduction

Alignments of biological sequences generated by computational algorithms are

routinely used as a basis for inference about sequences whose structure or func-

tion is unknown. The standard approach is to find the best-scoring alignment be-

tween a pair of sequences, where the the score rewards aligning similar residues,

and penalises substitutions and gaps. The best-scoring alignment can be found

by dynamic programming [NW70]. Other approaches that are frequently used,

such as FASTA [LAK89] and BLAST [AG96], approximate this.

An important question for a biologist faced with the results of such a program

is: How accurate is the proposed alignment? It is clearly desirable that an

alignment algorithm return the most accurate alignment it can, but the notion of

alignment accuracy implies the existence of a “correct” alignment, the definition

of which is non-trivial. One approach is to construct a definitive structural

alignment (based on crystallographic data and/or human judgement) which

can then be compared with alignments returned by the algorithms in question.

However, this is a difficult process to automate and it is not always clear what

is really wanted biologically.

Another approach is to take a closer look at the inherent properties of the

alignment algorithm itself. One can view the algorithm as a system for iden-

tifying the relationships between two sequences which have diverged due to

random mutations (substitutions and indels) [TKF92]. By repeatedly simulat-

ing the experiment of randomly mutating a pair of initially identical sequences,

then feeding the two sequences into the alignment algorithm, one can obtain

a measure of the accuracy of the algorithm. In this paper the results of such

empirical experiments are fist given. A theoretical estimate of the accuracy is

then developed, and shown to provide a good approximation to the observed

behaviour. A table from which accuracy values can be predicted for commonly

used scoring systems is also given. Finally it is described how to calculate the

expected accuracy of a given alignment, and how this can be used to construct
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an optimal accuracy alignment algorithm which performs demonstrably better

than standard dynamic programming.

Other attempts to quantify and predict the accuracy of alignments have

mainly been empirical and have focused on multiple alignments [MVF94], [Got96].

Mevissen and Vingron [MV96] have addressed pairwise alignment reliability

recently, and Hwa, Lässig and Drasdo have developed theoretical approaches

complementing those presented here [HL96, DHL97b].

3.2 Definitions and notation

This chapter will consider in detail the global alignment in which the entire

length of the two input sequences must be aligned [NW70], although most of

the results obtained will be equally applicable to the corresponding algorithms

for local alignment [SW81].

3.2.1 Definition of the alignment fidelity

In this chapter, a pairwise alignment a between two sequences (X,Y) is de-

scribed by the set of aligned residues or couplings (i � j) between residue i of X

and residue j of Y.

Given a correct alignment areal, define the fidelity F (a) of a as the fractional

overlap between a and areal, i.e.:

F (a) =
|a ∩ areal|
|areal|

(3.1)

This corresponds to the partial overlap fraction metric defined in Chapter 2.

3.2.2 Choice of scoring parameters

Let us first treat the simplest biologically-relevant case: global alignment of two

DNA sequences (X,Y) with linear gap costs and a “flat” substitution matrix

(one that doesn’t differentiate between e.g. purine-purine and purine-pyrimidine

substitutions). The score Sa for a particular alignment a is then:
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Sa = aα + bβ + cγ

where a, b and c are (respectively) the number of match, mismatch and gap

columns in the alignment a, and α, β and γ are match, mismatch and gap scores

(typically but not necessarily with α > 0, β < 0, γ < 0).

Although the score Sa depends on three free parameters (α, β and γ), the

maximum scoring alignment amax only depends on one effective parameter. To

see this, note first that global alignments must account for every residue in X

and Y, and so:

2a + 2b + c = LX + LY

where LX and LY are the lengths of X and Y. Now consider the transformed

score S′
a
:

S′
a

=
Sa − α

2 (LX + LY)

α − β
= −b − cλ

where

λ =
α/2 − γ

α − β
(3.2)

Since S′
a

differs from Sa only by an offset and a scaling factor, both of which

are independent of the particular alignment a, it follows that the ordering of the

scores Sa of all possible alignments a (and hence the choice of maximally-scoring

alignment amax) is determined uniquely by λ.

The parameter λ can be considered to be an effective gap penalty. When

λ � 1
2 , then β � 2γ and the highest-scoring alignment will be minimally gapped

as mismatches will be favoured over gaps. When 0 < λ < 1
2 , then β < 2γ < α

and gap regions will score higher than mismatches, with the consequence that all

substitutions will be misidentified as pairs of indels. When λ ≤ 0, then 2γ ≥ α

(assuming α > β) and gap regions will score higher than matches, which is

clearly disastrous [VW94].
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Figure 3.1: (a) Coupled Markov model of sequence evolution. Each sequence
is represented by a semi-independent Markov chain, coupled by a point sub-
stitution model. (b) The corresponding finite state automaton for sequence
alignment.

3.2.3 Probabilistic interpretation

Figure 3.1a shows a probabilistic model of sequence evolution that will be seen

to correspond to the alignment algorithm described in Section 3.2.2. Each se-

quence is modelled by a hidden Markov chain with two states, labelled coupled

and uncoupled. When both sides of the model are in the coupled state, aligned

residues are emitted in pairs, one on each side. When either side is in the

uncoupled state, unaligned residues are emitted singly on that side. Coupled

emissions stem from a common ancestral residue; the joint probability distribu-

tion for the residue pair is derived from a point substitution model. Uncoupled

emissions are unaligned and independent. Transitions from the coupled into the

uncoupled state occur with probability pG, as do self-looping transitions in the

uncoupled state. (N.B. for affine gaps, the coupled→uncoupled transition still

has probability pG, but the self-looping uncoupled→uncoupled transition is as-

signed the independent gap-extension probability pE .) The independence of the

two Markov chains is restricted by the requirement that neither chain is allowed

to enter the coupled state on its own (both must enter it simultaneously).
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3.2.4 A simple point substitution model

For the experiments described below, the following simplified one-parameter

model of nucleotide substitution was used. Start with identical residue pairs,

one in each sequence, chosen at random from the set {A,C,T,G}. For each of

the two residues, replace it with a randomly-chosen nucleotide with probability

pS . The replacement nucleotide has a one in four chance of being identical to

the residue it is replacing. The probability qXY of the residue pair (X,Y ) being

emitted in the coupled state is thus:

qXY =

{

1
16 (1 + 3(1 − pS)2) if X = Y
1
16 (1 − (1 − pS)2) if X 6= Y

(3.3)

The probability qX of the residue X being emitted in the uncoupled state

is:

qX =
1

4
(3.4)

Note that if

pS = 1 − e−2kt

where k is a point substitution rate and t is a time-like parameter, this model

is identical to that proposed by Jukes and Cantor [JC69].

3.2.5 Relationship between probabilistic model and align-

ment algorithm

Figure 3.1b depicts a stochastic finite-state machine for traversing the com-

bined state space of the coupled Markov chains of Figure 3.1a. The match state

of the automaton in Figure 3.1b emits coupled residue pairs in both sequences,

whereas the insert and delete states emit uncoupled residues in X and Y respec-

tively. Note the asymmetry of the insert→delete transition, which is required

to preserve the independence of the gap length distributions in each sequence.
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The automaton in Figure 3.1b is itself a hidden Markov model, albeit one

which models two sequences rather than one. Alignment of sequences to hid-

den Markov models is performed using the Viterbi dynamic programming algo-

rithm. To identify the most likely alignment a for a pair of sequences related

under the simple indel model, one uses the Viterbi algorithm to align the se-

quences to the automaton in Figure 3.1b. This turns out to be mathematically

equivalent to the standard (Needleman-Wunsch) alignment algorithm; that is,

Needleman-Wunsch finds the most likely set of ancestral residue couplings under

the probabilistic mutation model given a pair of sequences (X,Y).

Assuming the substitution model described in Section 3.2.4, and using the

scoring notation of Section 3.2.2, it is found that the alignment score Sa is

equal to the posterior log-likelihood of the sequence pair if the following match,

mismatch and gap scores are chosen:

α = log
(1 − pG)2(1 + 3(1 − pS)2)

16
(3.5)

β = log
(1 − pG)2(1 − (1 − pS)2)

16
(3.6)

γ = log
pG

4
(3.7)

If one is not interested in the exact score of the alignment obtained, but

only in ensuring that its score is maximised, and if one restricts oneself to

global alignments, then one need only specify a single scoring parameter such

as the parameter λ defined in (3.2). Denote by λ̂ the probabilistic value for λ,

which is obtained by substituting equations (3.5)-(3.7) into equation (3.2):

λ̂ =
log

[

( 1
pG

− 1)
√

1 + 3(1 − pS)2
]

log
[

1+3(1−pS)2

1−(1−pS)2

] (3.8)

Given that λ̂ returns the alignment with the highest log-likelihood under the

generative model, it is natural to predict that it is the optimal value of λ for
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reconstructing the correct alignment, in the sense that it maximises the fidelity

F (amax).

3.3 Results

3.3.1 Simulation 1: Optimisation of the alignment fidelity

with respect to the scoring scheme

In order to test the prediction that λ̂ is optimal, 50 pairwise alignments were

randomly generated, each with 1000 aligned residue pairs plus gap regions, ac-

cording to the evolutionary model of Section 3.2.3 with pG and pS set to a range

of different values. The pairs of sequences thus generated were then indepen-

dently re-aligned by the Needleman-Wunsch algorithm using a range of different

values of λ, and the fidelities of the returned alignments were measured. With

this procedure the value of λ that is optimal for reconstructing the alignment

can be estimated and compared with the value λ̂ predicted by equation (3.8).

3.3.2 Simulation 2: Measurement of the alignment fidelity

The sequence generation procedure of simulation 1 was performed at various

different values of pG and pS and the sequences re-aligned using λ = λ̂. The

fidelity was measured and the process repeated until the mean re-alignment

fidelity was known to within an error margin of ±0.1 (this was a 95% confidence

limit, assuming the fidelity of an alignment to be a Gaussian distributed random

variable).

3.3.3 The probabilistic prediction λ̂ is supported experi-

mentally

Figure 3.2 shows values of λ̂ for different values of pG and pS . Note that when

λ̂ drops below zero, effective reconstruction of the alignment is impossible, as

gaps score higher than matches. This regime is indicated by the shaded region

in Figure 3.2.
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Figure 3.2: Contours of constant λ̂ in mutation parameter space. λ̂ is the
effective gap penalty. The shaded region on the right-hand side of the plot
represents λ̂ < 0, where pairs of indel events are more likely than matches and
accurate alignment is effectively impossible.

Figure 3.3 shows how the fidelity F changes as a function of λ when pG = 0.1

and pS = 0.2. For λ ≤ 0 the optimal alignment is all gaps and the fidelity is

zero; for high λ the optimal alignment is minimally gapped and the fidelity

flattens out, eventually reaching a plateau. In between these extremes there is

a value of λ which maximises the fidelity.

By definition, setting λ = λ̂ will find the most likely alignment, but there is

no proof that this alignment will be the most faithful one. Figure 3.4 plots the

observed optimal values of λ against the predicted values λ̂. There is a good

correspondence, supporting the hypothesis that the likelihood scoring approach

is valid.

3.3.4 The fidelity decreases as pG and pS are increased

The graphs in Figure 3.5 show the dependence of the maximal fidelity F on the

gap probability pG and the substitution probability pS . Figure 3.5a plots F as
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Figure 3.3: The fidelity F of alignments returned by dynamic programming for
a range of values of the effective gap penalty λ, with pG and pS set to 0.1 and
0.2 respectively. When λ ∼ 0, the optimal alignments are all gaps and F → 0.
As λ → ∞, the optimal alignment tends to become minimally gapped, causing
F to plateau. The data in this Figure are from simulation 1.
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Figure 3.4: Values of λ which are observed from the simulation data to be
optimal are compared with the values λ̂ predicted by the likelihood scoring
approach. There appears to be a strong correlation, with slope unity (solid
line). The data in this Figure are from simulation 1.

a function of pG at various different constant values of pS and Figure 3.5b plots

F against pS at different constant values of pG.

It can be seen that in general F decreases monotonically as the mutation

parameters increase. The dependence of F on pG and pS is nearly linear up

to around (pG, pS) ∼ (0.2, 0.2). Notable deviations from this behaviour are ob-

servable, for example at (pG, pS) ' (0.2, 0.04) and again at (pG, pS) ' (0.3, 0.1).

At both these points the fidelity appears to be discontinuous. Referring back to

Figure 3.2, it is seen that these points are on the locus λ = 0.5, which is recalled

from Section 3.2.2 as the point at which mismatches become more likely than

gaps. So the discontinuity can be identified with the scoring scheme entering a

region of parameter space where substitution events are recognised.
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Figure 3.5: These graphs show the variation of the fidelity F (a) as a function of
pG at fixed pS , and (b) as a function of pS at fixed pG. Note the discontinuities
at (pG, pS) ∼ (0.2, 0.04) and (0.3, 0.1), explained in the text. The data in this
Figure are from simulation 2.

3.3.5 An analytic approximation to the alignment fidelity

Motivated by the near-linearity of the fidelity at low (pG, pS), an analytic ap-

proximation to the alignment fidelity can be developed.

To follow the analysis of the following section it is useful to be able to

view an alignment geometrically, as a path through a dynamic programming

matrix. The horizontal and vertical axes of the matrix represent the two aligned

sequences X and Y. A global alignment a is represented by a path from the top

left to the bottom right of the matrix connecting all the coupled residue pairs

(x, y) ∈ a. Diagonal segments of the path correspond to match and mismatch

regions and horizontal and vertical segments correspond to gaps. The fidelity

of an alignment path a is its fractional overlap with the correct alignment path

areal.

When the mutation probabilities are small, the Viterbi alignment path amax

returned by the dynamic programming algorithm is tightly bound to the correct

path areal. The main source of errors is misplacement of gaps by the algorithm,

as illustrated in Figure 3.6. This effect is called edge wander. The fidelity in

this regime is governed by the average displacement distance of each gap (the

mean edge wander) and by the frequency of gaps. The next section describes
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Figure 3.6: Edge wander - minor deviation of the Viterbi alignment path from
the correct path - is the principal source of error in alignments between closely
related sequences. In this toy example, the historically correct alignment (solid
line) contains a mismatch next to an indel, but the Viterbi algorithm inevitably
misaligns the two T residues (dotted line). The Viterbi edge wander e is defined
to be the number of residues by which the gap is misplaced (here e = 1).

how to calculate the mean edge wander.

3.3.6 Calculation of the edge wander

Let the edge wander e be the displacement, in residues, of a gap in some near-

perfect alignment a compared with the same gap in the correct alignment. Let

S(e) be the score of that segment of a which extends E residues to the left

and right of the correct location of the gap, where E is some integer such that

(1/pG) � E � e. If vk and wk are the individual scores of the k’th residue

pairings along adjacent diagonals (v and w) of the dynamic programming ma-

trix, with k = 0 at the correct location of the gap (so that, in the notation of

Section 3.2.1, vk corresponds to residue pairing (i+ k � j + k) and wk to residue

pairing (i + k + 1 � j + k), where i and j are such that the correct gap location

sits between residue pairings (i � j) and (i + 2 � j + 1)), then one can write:
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S(e) =

e
∑

k=−E+1

vk + γ +

E
∑

k=e+1

wk

=

E
∑

k=−E+1

wk + γ +

e
∑

k=−E+1

(vk − wk)

= SW + γ + R(e)

where γ is the gap score, SW =
∑E

k=−E+1 wk is the score along diagonal w,

and R(e) =
∑e

k=−E+1(vk − wk) is the difference in score between alignment a

and diagonal w, minus the gap penalty γ.

Note that since the vk and wk are independent random variables, R(e) is

a Markov process. (Strictly, the series (vk, vk+1, ...) is not independent of the

series (wk, wk+1, ...), since vk and wk represent residue pairings in the same row

of the dynamic programming matrix. However, R(e) is still Markov.)

The vk and wk are not identically distributed for all k, since the correct path

crosses over from v to w between k = 0 and k = 1. For convenience rewrite

vk and wk in terms of the scores tk and sk of residue pairings on and off the

correct path, respectively:

vk =

{

tk if k ≤ 0
sk if k > 0

wk =

{

sk if k ≤ 0
tk if k > 0

An expression for R(e) can now be written in terms of rk ≡ sk − tk:

R(e) =

{ ∑e
k=−E+1(−rk) if e ≤ 0

∑0
k=−E+1(−rk) +

∑e
k=1 rk if e > 0

(3.9)

The random behaviour of R(e) is illustrated in Figure 3.7. On average, R(e)

will be zero at e = 0 and negative elsewhere; in any specific case, however, the

maximum of R(e) may be some distance away from e = 0 and this is where the

alignment algorithm will place the gap.
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Figure 3.7: Variations in the alignment score when a gap is moved away from
its correct position by sliding it along a diagonal. The solid line shows the mean
behaviour: on average, the score will decrease as the gap is moved away from
its correct position, so the score is maximal at e = 0. The dotted lines show
examples of the behaviour in specific cases. Due to random fluctuations, the
peak of R(e) may be somewhere away from e = 0. This means the optimal-
scoring position for the alignment algorithm to place the gap will not be the
correct position.
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The joint probability distribution function (p.d.f.) ς(s, t) of s and t depends

on the joint probability distribution qXY of correlated residue pairs and the

prior probability qX of individual residues, defined in (3.3) and (3.4):

ς(s, t) =
∑

X,Y,Z

qXY qZδ(s − log
qXY

qXqY
)δ(t − log

qXZ

qXqZ
)

where δ(x) is the Kronecker delta function:

δ(x) ≡
{

1 if x = 0
0 if x 6= 0

For convenience the scores are here written as log odds-ratios with respect

to a “null” model whereby all residues are uncorrelated; this does not affect the

final result.

The p.d.f. ρ(r) of r ≡ s − t is derived from ς(s, t):

ρ(r) =
∑

t

ς(r + t, t) =
∑

X,Y,Z

qXY qZδ(r − log
qXY qZ

qXZqY
) (3.10)

Now consider the Viterbi alignment amax. Since this is the highest scoring

alignment, the Viterbi edge wander emax is given by:

emax = argmax
e

S(e) = argmax
e

R(e)

i.e. the edge wander is determined by the behaviour of R(e). If the peak of

R(e) is ambiguous, so that there are two or more possible values for argmaxe R(e),

then emax is defined to be the largest of those values.

Let E(e) be the p.d.f. of emax:

E(e) = Pr [emax = e]

Utilising the Markov property of R(e), factorise E(e) by splitting the process

(3.9) into three parts, cutting at k = 0 and k = e and summing over allowable

values of the difference y = R(e) −R(0):
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E(e) =
{ ∑

y CL(e + E, 0).XR(−e, y, 0).CR(E,−y) if e ≤ 0
∑

y CL(E,−y).XL(e, y, 0).CR(E − e, 0) if e > 0

where CL, CR, XL and XR are bounding probabilities defined on sums of rk

(C signifies a cumulative distribution and X an exact distribution, and the L

and R suffices mean “left of the peak” and “right of the peak”):

CL(x, z) = Pr [∀n ∈ {1, 2, ..., x} :
n

∑

k=1

rk ≤ z]

CR(x, z) = Pr [∀n ∈ {1, 2, ..., x} :

n
∑

k=1

rk < z]

XL(x, y, z) = Pr[

x
∑

k=1

(−rk) = y and

∀n ∈ {1, 2, ..., x} :

n
∑

k=1

(−rk) ≤ z]

XR(x, y, z) = Pr[

x
∑

k=1

(−rk) = y and

∀n ∈ {1, 2, ..., x} :

n
∑

k=1

(−rk) < z]

The CL, CR, XL and XR can be found by recursive decomposition, separating

the first step from the (x − 1) succeeding ones:

CL(x, z) =

{ ∑

r≤z ρ(r)CL(x − 1, z − r) for x > 0

1 for x = 0
(3.11)

CR(x, z) =

{
∑

r<z ρ(r)CR(x − 1, z − r) for x > 0
1 for x = 0

(3.12)
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Score matrix 〈|e|〉 pG Fg=12

PAM40 0.326 2−g/2 0.99

PAM80 0.688 2−g/2 0.98

PAM120 1.246 2−g/2 0.96

PAM160 1.884 2−g/2 0.94

PAM200 2.573 2−g/3 0.68

PAM250 3.888 2−g/3 0.53

BLOSUM100 0.794 2−g/3 0.90

BLOSUM75 1.332 2−g/2 0.96

BLOSUM62 1.826 2−g/2 0.94

BLOSUM50 3.286 2−g/3 0.60

BLOSUM45 3.671 2−g/3 0.56

BLOSUM30 ∼24 2−g/5 -

Table 3.1: Edge wander for various common amino acid substitution matrices.

XL(x, y, z) =
{ ∑

r≥−z ρ(r)XL(x − 1, y + r, z + r) for x > 0

δ(y) for x = 0
(3.13)

XR(x, y, z) =
{ ∑

r>−z ρ(r)XR(x − 1, y + r, z + r) for x > 0
δ(y) for x = 0

(3.14)

where δ(y) is the Kronecker delta again.

A program edge 1 has been written to calculate the mean absolute edge

wander 〈|e|〉 for various common substitution matrices; the results are listed in

Table 3.1. To find the expected fidelity given the mean edge wander, use the

following formula:

F = 1 − 〈|e|〉
(

1 − (1 − pG)2
)

(3.15)

1C++ source code for the edge program is available at

http://www.sanger.ac.uk/Users/ihh/edge.html
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Figure 3.8: The fidelity data of Figure 3.5a (dashed lines), plotted along with
the predictions of the edge wander theory (solid lines). Near pG ∼ 0, the edge
wander theory always slightly overestimates the fidelity. When pS is small,
this trend continues for higher pG, but for higher pS (notably pS = 0.5) the
edge wander quickly exceeds the mean path fragment length and the theory
consequently underestimates the fidelity.

taking pG to be the observed gap frequency per strand. Alternatively, pG

can be calculated from the gap opening penalty (−g, where g > 0) using the for-

mulae in the third column of Table 3.1. The values in the final column (labelled

Fg=12) are the expected fidelities when g = 12. Note that the prediction for

F is independent of the particular gap model being used (e.g. linear or affine).

Equations (3.11)-(3.14) describe a random walk with an absorbing barrier and

a reflection at the origin. These equations appear amenable to further manip-

ulation to speed up calculations; for example, the distribution (3.10) might be

successfully approximated by a more tractable distribution such as a Gaussian.

Figure 3.8 compares the predictions of this section with some of the results

from simulation 2. There is a good correspondence between the edge wander

predictions and the simulation data.
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3.3.7 Estimating the fidelity of a particular alignment

Given a probabilistic model such as the one shown in Figure 3.1, the posterior

probability of a particular coupling (i � j) can be calculated:

Pr[i � j] =
∑

a:(i�j)∈a

Pr[a]

The sum is over all paths that contain this coupling and is straightforward

to compute using the Forward-Backward algorithm described in Chapter 2.

Using this result one can write down an expression for the expected overlap

Â(a) between a given alignment a and paths sampled from the posterior distri-

bution. This is equivalently the expected number of correct matches in a, which

is a natural measure of the overall accuracy of a.

Â(a) =
∑

(i�j)∈a

Pr[i � j]

where the sum is over all aligned pairs in a.

It is also possible to write down M̂ , the expected number of matches in a

path sampled from the posterior distribution (and the expected total number

of matches in the real alignment):

M̂ =
∑

all (i � j)

Pr[i � j]

The above two quantities are posterior expectations of the numerator and

denominator of (3.1). An estimate for the fidelity F̂ (a) of a given alignment a

is:

F̂ (a) =
Â(a)

M̂
(3.16)

3.3.8 An optimal accuracy alignment algorithm

Given this new type of score for an alignment, it is possible to find the alignment

that maximises this score, and hence has the highest predicted accuracy (by this
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defintion of accuracy, of course). The algorithm to do this has been described

elsewhere [DEKM98] and is revisited here. The method required is identical to

standard dynamic programming, but uses score values given by the posterior

probabilities of pair matches; gap costs are not used. The dynamic programming

recursion equations are:

A(i, j) = max







A(i − 1, j − 1) + Pr[i � j]
A(i − 1, j)
A(i, j − 1)

and the standard traceback procedure will produce the best alignment [DEKM98].

The structure of this recursion ensures that the returned alignment will be le-

gitimate, and the calculation of the cost function ensures that the alignment is

optimised for the sum of the Pr[i � j] terms along its path. Interestingly the

same algorithm works for any sort of gap score; what will change with different

scores are the Pr[i � j] terms themselves, which are obtained from the standard,

scoring scheme-specific dynamic programming algorithms referred to above.

An implementation of the optimal accuracy algorithm is available from

http://www.sanger.ac.uk/Users/ihh/optacc.html

3.3.9 Simulation 3: Evaluation of the optimal accuracy

algorithm

In order to test the prediction that the optimal accuracy alignment algorithm

outperforms the Viterbi algorithm when the assumed model is correct, the se-

quence generation and re-alignment procedure of simulation 2 was repeated

using the optimal accuracy algorithm.

Figure 3.9a shows the results of these simulations compared with the cor-

responding data for the Viterbi algorithm from simulation 2. It is clear the

optimal accuracy algorithm has a significant advantage. Figure 3.9b is a plot

of the expected fidelity (3.16) of these alignments against the measured fidelity.

The correspondence is evident, supporting the validity of this particular statis-

tic.
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Figure 3.9: Evaluation of the optimal accuracy alignment algorithm. (a) Fidelity
data for the Viterbi algorithm (dashed lines) plotted with data for the optimal
accuracy algorithm (solid lines). (b) The expected fidelity plotted against the
measured fidelity for the data points in (a). The Viterbi data are from simulation
2 (see Figure 3.5a) and the optimal accuracy data from simulation 3.

3.4 Discussion

It has been demonstrated that using a maximum likelihood scoring with the

dynamic programming algorithm also appears to give maximally faithful align-

ments. With the aid of alignment fidelity measurements collected using a simu-

lated model of evolution, the dependence of the alignment fidelity on the under-

lying mutation parameters has been discussed, and an analytic approximation

(the edge wander approximation) describing this dependence has been presented

along with a method for calculating the expected fidelity of a given alignment

and an algorithm for finding the expected optimal-accuracy alignment.

These results demonstrate that the edge wander theory is a useful first-order

approximation up to large values of pS . Application of the theory to common

substitution matrices predicts the extent of the unrecoverable loss of alignment

information. The more distant the similarity, the less accurate we can expect the

alignment to be. When aligning sequences diverged by 250 PAMs, for example,

one must assume an average error of around 3.9 residues in the positioning of

every gap, whereas that expected error is only 1.2 residues at 120 PAMs. In

particular, we must not expect alignments for matches in the twilight zone of
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detectability to be accurate.

There is a statistical physics analogy that may help to give insight into the

edge wander approximation. Consider the variable r whose probability density

function ρ(r) is given by (3.10). The mean value of r, r̄ = 〈r〉ρ, is a relative

entropy or Kullback-Leibler divergence between two probability distributions,

representing the adjacent diagonals that the Viterbi path could lie on. The vari-

ance of r, 〈(r− r̄)2〉ρ, is related to the fluctuations in this entropy-like quantity.

The relative sizes of 〈(r − r̄)2〉ρ and r̄2 indicate the extent of the score fluctua-

tions and equations (3.11)-(3.14) relate this to the error in the gap positioning,

i.e. the edge wander. The edge wander approximation essentially assumes that

the entropy (score) fluctuations are small and that the Viterbi path is “bound”

to the correct path. This approximation is similar to perturbative approaches

in statistical physics [LL80]. When edge wander breaks down, a full treatment

of the critical scaling phenomena of the path behaviour is required. Terence

Hwa, Michael Lässig and Dirk Drasdo [HL96, Hwa96, DHL97b, DHL97a] have

published analyses of this problem that apply the theory of the renormalisation

group, successfully used in areas of physics as diverse as quantum electrody-

namics and chaos theory. The behaviour of the optimal path turns out to be

analogous to the pinning of magnetic flux lines by randomly scattered defects in

superconductors and the statistical behaviour of directed polymers in a random

potential, both of which are well-studied by physicists. The renormalisation

group is mathematically difficult compared to the probability theory used in

this chapter, but it apparently has a lot to offer to the theory of sequence align-

ment algorithms. A notable result is that the renormalisation group theory

predicts an optimal scoring scheme [HL96] that contradicts (3.8). This result

is deserving of further investigation; a good starting-point would be to repeat

Simulation 1 to greater precision.

The optimal accuracy algorithm described here and in [DEKM98] provides

a marked improvement on the Viterbi algorithm. It will be interesting to see
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if this improvement carries over to real biological alignments. The simulations

presented here also verify that the expected fidelity of an alignment is a useful

indicator of alignment accuracy.

The observation that perfect alignment recovery is theoretically unattain-

able reinforces the idea that for some applications, it may be advantageous to

consider a set or envelope of suboptimal alignment paths rather than singling

out the highest-scoring path. Examples of such envelopes might include only

residue couplings whose likelihood exceeded some cutoff value, or be defined by

a set of path constraints chosen to maximise the sum of the likelihoods of the

paths thus contained. An example of the former type has been proposed by

Miyazawa [Miy94]; the issue of alignment reliability has also been addressed by

Mevissen and Vingron [MV96].

In conclusion, it is noted once again that many of the results presented here

are applicable to any dynamic programming based sequence homology algo-

rithm, not just Needleman-Wunsch with linear gap penalties. Once there is a

gap, the score changes involved in moving it as in the edge-wander calculation

are the same for affine and linear gap penalties, and also for local and global

alignments. It is hoped that the quantitative results for the alignment fidelities

will be of use both to researchers in molecular evolution and to users of sequence

alignment software.
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