
BIOINFORMATICS Vol. 19 Suppl. 1 2003, pages i147–i157
DOI: 10.1093/bioinformatics/btg1019

Using guide trees to construct multiple-sequence
evolutionary HMMs
I. Holmes

Department of Statistics, University of Oxford. 1 South Parks Road, Oxford OX1 3TG,
UK

Received on January 6, 2003; accepted on February 20, 2000

ABSTRACT
Motivation: Score-based progressive alignment algo-
rithms do dynamic programming on successive branches
of a guide tree. The analogous probabilistic construct is
an Evolutionary HMM. This is a multiple-sequence hidden
Markov model (HMM) made by combining transducers
(conditionally normalised Pair HMMs) on the branches of
a phylogenetic tree.
Methods: We present general algorithms for constructing
an Evolutionary HMM from any Pair HMM and for doing
dynamic programming to any Multiple-sequence HMM.
Results: Our prototype implementation, Handel, is based
on the Thorne-Kishino-Felsenstein evolutionary model and
is benchmarked using structural reference alignments.
Availability: Handel can be downloaded under GPL from
www.biowiki.org/Handel

INTRODUCTION
Recent years have seen a surge of interest in the use of
probabilistic evolutionary models for multiple sequence
alignment (Thorne et al., 1991; Durbin et al., 1998;
Hein et al., 2000; Holmes and Bruno, 2001; Holmes and
Rubin, 2002). The term ‘statistical alignment’ has been
coined (Hein et al., 2000) to describe this work. Amongst
other advantages, the theory scales naturally to any shape
or size of phylogenetic tree (Holmes and Bruno, 2001)
and offers systematic approaches to problems such as
parameterisation (Holmes and Rubin, 2002), homology
testing (Hein et al., 2000) and phylogenetic profiling
(Durbin et al., 1998).

Much statistical alignment work to date has used
a single-residue indel model called the TKF91 model
(Thorne et al., 1991). The probability of observing a given
pairwise alignment under the TKF91 model is described
by a Pair HMM (Durbin et al., 1998). In previous work,
we used this TKF91 Pair HMM to develop and implement
a multiple alignment package called Handel. In doing so,
we introduced the concept of a multiple-sequence HMM
(or Multiple HMM) and showed how a special kind of
Multiple HMM, called an Evolutionary HMM, could be

! ""#
$$%

""#
$$% ""#

$$%
S1 S2

S3

S8

S4

S5
S6

S7
Fig. 1. A multiple alignment with a phylogenetic ‘guide tree’ can
be represented as a Bayesian belief network. The sequences at leaf
nodes (i.e. S4, S6, S7 and S8) are observed, while internal nodes (S1,
S2, S3 and S5) are unobserved.

constructed by associating the TKF91 Pair HMM with
each branch of a phylogenetic guide tree (Holmes and
Bruno, 2001).

The idea of using the branches of a guide tree to
combine suitable Pair HMMs (henceforth called Branch
HMMs) follows the intuition that underpins progressive
alignment tools such as CLUSTALW (Thompson et al.,
1994). The phylogenetic tree here is being used as a
‘Bayesian belief network’, specifying dependencies be-
tween observed (and unobserved) sequences (Friedman et
al., 2001). For example, the likelihood function for the tree
shown in Figure 1 takes the form P(S1 . . . S8) = P(S1)
× P(S2|S1) × P(S3|S2) × P(S4|S3) × P(S5|S3) ×
P(S6|S5) × P(S7|S5) × P(S8|S2), where the conditional
probabilities P(Sn|Sm) are given by the Branch HMM.
This is in contrast to methods that align all sequences to
a ‘consensus’ profile HMM. For such methods, the like-
lihood function would be P(S1 . . . S8) = ∏8

n=1 P(Sn),
with each P(Sn) given by the consensus HMM.

An Evolutionary HMM (EHMM) is not limited to the
TKF91 model as its choice of Branch HMM, and can be
generalised (Holmes and Bruno, 2001). The motivation
for this is the eventual use of arbitrarily complex Branch
HMMs so as to model phenomena such as (taking three
examples from CLUSTALW) affine gaps, local alignment
and penalisation of indels in hydrophobic regions.

The purpose of this paper is to formalise the EHMM
construction algorithm and to report early experimental
results. The section entitled ‘THE MULTIPLE HMM’
defines the general Multiple HMM, extending the
formal definitions for 1- and 2-sequence HMMs that

Bioinformatics 19(Suppl. 1) c© Oxford University Press 2003; all rights reserved. i147

I.Holmes

have appeared elsewhere (Durbin et al., 1998). ‘THE
EVOLUTIONARY HMM’ shows how to construct an
Evolutionary HMM by combining Branch HMMs on a
guide tree. ‘RESULTS’ describes the implementation of
these algorithms in the Handel package and gives results
of tests on biological data. Finally, ‘DISCUSSION’
discusses how the work presented here can be used to im-
plement a wide variety of multiple alignment algorithms
that can be trained directly from data. A more formal
exposition of certain points, including null state removal
and dynamic programming, is given in the Appendices.

The Handel package is available under the GNU Public
License from www.biowiki.org/Handel/.

THE MULTIPLE HMM
Suppose that ! is a finite alphabet, e.g. ! = {A,C,G,T}
for DNA. We write !L for the set of all sequences of
length L , and !∗ = ⋃∞

L=0 !L for the set of all sequences.
The length of a sequence S is written |S|. When written
explicitly, sequences are enclosed by square brackets;
e.g. the DNA sequence ‘TATAA’ is written [T,A,T,A,A],
while the empty sequence is written []. The concatenation
of two sequences a, b ∈ !∗ is written a ◦ b.

State space
The Multiple HMM (MHMM) is a Markov model, M,
with a finite state space, ", that emits N separate
sequences S1, S2 . . . SN . For simplicity, we will assume
that each sequence Sn uses the same alphabet !, i.e.
Sn ∈ !∗ ∀n. We can then write the vector of N emitted
sequences as S ∈ (!∗)N .

In the HMM literature, the states of a Markov model are
often sequentially numbered (1, 2 . . . M) for convenience.
In this paper, we use the different convention that states in
the MHMM are represented by an abstract identifier. This
can be a symbol, a string or even a number, but without
the restriction that we have to use every number in some
range [1, M]; instead, we just have to be able to enumerate
all the states.

Let t (i, j) be the transition probability from state i to
state j . If t (i, j) = 0 then we say that there is no transition
from i to j . Two special states are the start state, START,
and the end state, END. For all i ∈ ", we require that
t (i,START) = t (END, i) = 0.

Emissions
We use the convention that each state in the MHMM emits
symbols to some subset of the N sequences, emitting at
most one symbol to each sequence. Thus there are at most
(|!| + 1)N different kinds of state.

An emission is an N -dimensional vector E, each entry
of which is a sequence of length 0 or 1. If every sequence
has length 0 then E is a null emission (written E = []N).

INSERT ..TTGGAA <EOF>

..TTGCAA <EOF>

..TAGGCAA <EOF>

..TTGGCAA <EOF>

..TT
GGCA

A <E
OF>

START WAIT
DELETE
MATCH

Output sequences

Input
sequence

RECEIVE

END

Fig. 2. Schematic illustration of the conditionally normalised
MHMM, or stochastic transducer. Here <EOF> is a notional end-
of-file symbol that propels the transducer into the END state once the
input sequence is finished.

Each state i of the MHMM has associated with it an
emission E(i). States with null emissions are referred to as
null states. The special states START and END are always
null.

Transducers
We now introduce a special kind of MHMM called a
transducer MHMM. Rather than emitting symbols to all
N sequences, a transducer MHMM inputs symbols from
S1 and outputs to the remaining sequences (Eskin et al.,
2000). We continue to use the term ‘emission’ to describe
the vector E(φ) defined in ‘Emissions’, with the caveat
that the first entry of this vector E(φ)1 represents an
absorbed, not an emitted, symbol.

Let us define certain terms. A wait state is any null state
that is not START or END, while a receive state either inputs
a symbol from S1 or is the END state. We impose two
requirements on transducers. The first requirement is that
wait states can only make transitions into receive states;
furthermore, only wait states can make such transitions.
The second requirement is that outgoing transitions from
wait states are normalised conditional on the next input
symbol (or END); other transitions are normalised as usual.
A more formal treatment can be found in the section
entitled ‘FORMAL DEFINITIONS’.

An illustration of the transducer MHMM is shown in
Figure 2. Conceptually, the transducer pauses in a wait
state until it is notified of an incoming symbol or end-
of-input, which sends it into an appropriate receive state.
If end-of-input has been reached, the appropriate state is
END; otherwise, the transducer absorbs a symbol from the
input sequence and emits either an identical symbol (a
match), a different symbol (a mismatch) or no symbol
(a deletion) to each output sequence. The machine then
rattles around the insert states (potentially emitting more
symbols to the output sequences) before returning to a wait
state to wait for the next input symbol.

i148

Using guide trees in evolutionary HMMs

THE EVOLUTIONARY HMM
The Evolutionary HMM is a Multiple HMM that is
constructed using two components: a guide tree and a
Branch HMM. The general idea is that each Branch HMM
is a two-sequence transducer modeling evolution along a
single branch of the guide tree. This section introduces
these concepts and shows how the state space of the
Evolutionary HMM is a product of the state spaces of the
Branch HMMs.

The guide tree
We consider a tree ϒ with N nodes. Let A(n) be the parent
of node n, let D(n) be the set of all children of node
n and let A(n) and D(n) be the sets of, respectively, all
ancestors and all descendants of node n. For convenience,
we take node 1 to be the root, and stipulate that node 2
is its only child (D(1) = {2}); we call node 2 the sub-
root. An example of such a node numbering is shown in
Figure 1.

We assume the nodes are numbered in preorder (i.e.
parents before children: A(n) < n) and depth-first
(suppose l, m ∈ D(n) are siblings and l < m; then
k < m ∀k ∈ D(l)). We can also visit the nodes in
postorder (children before parents) by iterating backwards
from node N to node 1. A node that is visited before node
n in such a postorder traversal, but is not a descendant of
n, is said to be eclipsed by n.

We also require that each branch of the guide tree has
a length. This is a time parameter, T , drawn from some
set T . Let Tn be the length of branch A(n) → n. For
the present work, we will assume that the set T is the
continuous interval [0,∞), but it could also be a discrete
range.

The MHMM generates a sequence for each of the N
nodes. When we use this MHMM for multiple alignment
we will generally have observed only the sequences at the
leaf nodes. The ancestral sequences are ‘missing data’;
states that only emit symbols to these ancestral sequences
must be eliminated (‘ELIMINATING STATES’).

The Branch HMM
The Branch HMM (BHMM) is a two-sequence transducer
MHMM with state space % whose transition probabilities
τ(i, j |T) are functions of some time parameter, T ∈ T .
Let ε(i) be the emission for state i of the Branch HMM;
we assume these are independent of T .

We refer to sequence S1 as the ancestor and sequence S2
as the descendant. The ancestor is regarded as an ‘input’
and the descendant as an ‘output’ (c.f. Fig. 2). We will
usually assume that the Branch HMM is conditionally
normalised (‘Normalisation’). It is possible to use an
subnormalised BHMM; the consequence of this is that the
associated EHMM is also subnormalised. Since we will

(b)

(a)

(c)

IYIR IR IY

MRY MYRMRR MRY

MYR MYY

SBR

EBR

MRR1

MYY1

MRR2

MYY2

SBR

EBR

WAIT

WAIT1 WAIT2

WAIT3

INSR INSY

DELR DELY

INSR INSY

DELR DELY

Fig. 3. Example Branch HMMs (‘Normalisation’). These HMMs
use the binary alphabet ! = {R,Y} (purine/pyrimidine). The state

types can be deduced from the state names: thus χ(MRY) =RY
M ,

χ(INSR) =R
I, χ(WAIT1) = W etc. (a) A shaded, rounded box

is used to aggregate zeroth-order emit states. (b) Topology of the
Branch HMM for the TKF91 model (Thorne et al., 1991). (c)
Topology of a Branch HMM that can be used to propose single-
event substitution/insertion/deletion trajectories.

be constructing the EHMM by combining Branch HMMs,
and the EHMM itself has START and END states, we refer
to the start and end states for an individual Branch HMM
as SBR and EBR to avoid ambiguity.

To classify the states of the BHMM, we define a
function χ(ψ) denoting the type of a BHMM state ψ .

The permitted state types are W,
wx
M ,

w
D,

x
I, S and E, where

w, x ∈ !. The meaning of these state types is as follows: W

is a wait state;
wx
M is a match state with input symbol w and

output symbol x ;
w
D is a delete state with input symbol w;

x
I is an insert state with output symbol x ; S is the start state
(SBR); and E is the end state (EBR). Formal definitions are
given in ‘FORMAL DEFINITIONS’. We sometimes refer

to
wx
M - and

x
I-states collectively as output states, since they

output a symbol to the descendant sequence.
Two example Branch HMM topologies are shown

in Figure 3 for a binary purine/pyrimidine alphabet
! = {R,Y}. Figure 3b describes branch evolution
for the TKF91 single-residue indel model (Thorne et
al., 1991), while Figure 3c describes single-mutation
trajectories in a ‘long indel’ model that allows indel events
of geometrically distributed length (Miklos, Lunter and
Holmes; in prep). The transition probabilities for these
Branch HMMs are not shown. Note that Figure 3c lacks
transitions to EBR from states WAIT1 and WAIT2, and

i149

I.Holmes

""
$$

""
$$ ""

$$SBR MRR
MRY

WAIT

DELY

MYY
INSY

WAIT

Fig. 4. Example of an EHMM state for the guide tree in Figure 1
and the Branch HMM in Figure 3b. This state would be written
φ = {ψ1, ψ2 . . . ψ8} with ψ1 = SBR, ψ2 = MRR1, ψ3 = MRY
etc. The active node α(φ) is indicated with a double-bordered box.

so is subnormalised; in fact, in this Branch HMM, the
Forward sum F(S) represents the total mutation rate of
the sequence.

The inflated EHMM
We construct the Evolutionary HMM in two stages. In this
section, we develop an inflated form of the model where
each transition corresponds to a single event on some
branch of the guide tree. In ‘THE COLLAPSED EHMM’,
we describe a ‘collapsed’ state space for the model from
which most of the null states have been removed. Even
further collapsing of the state space is possible, e.g. the
use of Felsenstein’s algorithm to marginalise unobserved
emissions at internal nodes (Durbin et al., 1998).

In the Evolutionary HMM, each branch of the tree ϒ
is associated with a distinct Branch HMM (Fig. 4). For
n > 1, let ψn ∈ % be the state of the BHMM associated
with branch A(n)→ n; we can also think of this BHMM
as being associated with node n. Just so that ψn is defined
for all n, we also set ψ1 = SBR.

The vector of states φ = {ψ1, ψ2 . . . ψN } represents an
individual state of the Evolutionary HMM. The start and
end states of the EHMM are defined as we might expect:
in the start state φ = START, all nodes are labeled SBR,
while in the end state φ = END, all nodes are labeled EBR.

Let χn ≡ χ(ψn) be the Branch HMM state type for
branch A(n) → n. If χn = W, we say that node n is a

‘wait node’; if χn = x
I for some x ∈ !, we say node n is

an ‘insert node’; and so on.
For any given φ, the active node α(φ) is defined to be the

highest-numbered non-wait node; or (if there are no non-
wait nodes) the sub-root. In a given EHMM state φ, only
the active node and its descendants are allowed to change
their branch state (Fig. 5). The descendants of the active
node only change (from wait to receive states) if the active
node emits a symbol or goes into the EBR state, in which
case this event is propagated down the tree.

To make this explicit, suppose that the active node
changes from state ψn to state ψ ′n where n = α(φ). What
happens next depends on the new state type of node n.

If ψ ′n is a wait or delete state (χ(ψ ′n) ∈ {W,
w
D}), then

the transition is complete. If ψ ′n is the EBR state, then all
descendants are forced into the EBR state; this can only

""
$$

""
$$ ""

$$SBR MRR
MRY

WAIT

DELY

MYY
INSY

WAIT

Step 1. !

""
$$

""
$$ ""

$$SBR MRR
MRY

WAIT

DELY

MYY
WAIT

WAIT

Step 2. !

""
$$

""
$$ ""

$$SBR MRR
MRY

WAIT

DELY

WAIT
WAIT

WAIT

Step 3. !

""
$$

""
$$ ""

$$SBR MRR
MRY

WAIT

WAIT

WAIT
WAIT

WAIT

Step 4. !

""
$$

""
$$ ""

$$SBR MRR
WAIT

WAIT

WAIT

WAIT
WAIT

WAIT

Step 5. !

""
$$

""
$$ ""

$$SBR INSR
MRR

DELR

MRY

DELR
WAIT

WAIT

Fig. 5. Example path through the EHMM of Figure 4. Step 1: The
initial state of the EHMM is one in which node 6 has just entered an
INSY (insert) state (and so has just emitted a Y to sequence S6). For
this to have happened, nodes 7 and 8 must be in WAIT states. Node 6
is the highest non-WAIT node, and so is the active node (α(φ) = 6);
since it is where the last emission event was initiated, node 6 is also
the emitter node (β(φ) = 6). In the first step of this path, node 6 goes
into a WAIT state, leaving node 5 as the new active node. No symbols
are emitted in this step. Step 2: Node 5 goes from an MYY (match)
state to a WAIT state, leaving node 4 as the new active node. No
symbols are emitted. Step 3: Node 4 goes from a DELY (delete) state
to a WAIT state, leaving node 3 as the new active node. No symbols
are emitted. Step 4: Node 3 goes from an MRY (mismatch) state to a
WAIT state, leaving node 2 as the new active node. No symbols are
emitted. Step 5: Node 2 goes into an INSR (insert) state, emitting an
R to sequence S2. Since node 2 has entered an output state, nodes 3
and 8 are forced into receive states: node 3 goes into an MRR (match)
state (emitting a R to sequence S3), while node 8 goes into a DELR
(delete) state (and therefore emits nothing). Since node 3 has entered
an output state, nodes 4 and 5 are forced into receive states: node 4
goes into an MRY (match) state (emitting a Y to sequence S4), while
node 5 goes into a DELR (delete) state (and emits nothing). Since
node 5 is not in an output state, the wave of updates ends here; in
this one step, an R was emitted to S2 and S3, while a Y was emitted
to S4. The emitter node, i.e. the node at which the wave originated,
is node 2. Node 8 is now the highest-numbered non-WAIT state and
so is the new active node, i.e. it will be the next to be updated.

i150

Using guide trees in evolutionary HMMs

Table 1. Relative performance of alignment strategies.

Treatment of Accuracy
internal sequences Progressive Refined Resampled

Sampled 55.2% 54.9% 57.4%
Marginalised 63.4% 65.4% 66.0%

happen if n = 2. If ψ ′n is an output state (χ(ψ ′n) ∈
{ x
I,

wx
M }), then all children of the active node are forced

into corresponding receive states (
xy
M or

x
D); if any of these

receive states are
xy
M -states, then the children of these nodes

are forced into receive states; and so on down the tree (see
e.g. Fig. 5).

Emission states have characteristic properties. Suppose
that φ = {ψ1 . . . ψN } is a general EHMM state. If φ is
an emission state, we can identify the emitter node β(φ)
where the emission event was initiated: it must have been
at the highest-numbered insert node or (if there are no
insert nodes) at the sub-root. If φ is an emission state,
then the input symbol of every node descended from β(φ)
will match the output symbol of its parent. We call this
property synchronisation. Formal definitions of this and
other concepts introduced in this section are given in
‘FORMAL DEFINITIONS’.

This concludes our definition of the inflated Evolu-
tionary HMM. It is easy to verify that the EHMM, thus
constructed, is a conditionally normalised Multiple HMM
as defined in ‘Normalisation’. It is also evident that
the EHMM models the action of evolution along each
branch as an independent Branch HMM, since all we have
effectively done is to specify an order for updating the
states of these Branch HMMs. In ‘THE COLLAPSED
EHMM’, we describe how to eliminate all unnecessary
null states from the EHMM; that is, all states except
for START, END, the emission states, and all-wait states
(where the sub-root and all descendants are W-nodes).

Sampling issues
The EHMM jointly models all sequences and alignments
in the tree. When sampling multiple alignments, consider-
ations of memory and time complexity may dictate that
we restrict ourselves to resampling the alignment for a
small part of the tree at any individual step. To do this,
we construct an EHMM for the subtree of interest; e.g.
for an individual branch (!) or the neighbourhood of a
node (!"#$%). These procedures—called branch sampling
and node sampling—are detailed elsewhere (Holmes and
Bruno, 2001).

Unobserved internal sequences can be removed from
the observed sequence vector S = {S1, S2 . . . SN } by

discarding some emission indices and renumbering the
rest. For example, in the tree of Figure 1, we would
discard emission indices S1, S2, S3 and S5 and renumber
S4 → S′1, S6 → S′2, S7 → S′3 and S8 → S′4. Some
emit states of the EHMM only emit symbols to internal
sequences; these states can be marginalised using the
state elimination algorithm described in ‘ELIMINATING
STATES’. If the Branch HMM is zeroth-order (Fig. 3),
one can use Felsenstein’s algorithm to sum out internal
residues (Durbin et al., 1998).

RESULTS
We have implemented the EHMM construction and align-
ment algorithms for the TKF91 model (Fig. 3b), includ-
ing the branch and node sampling techniques and internal-
sequence elimination mentioned in ‘The Branch HMM’,
in the Handel package (Holmes and Bruno, 2001). The
TKF91 model describes the evolution of a whole sequence
under the influence of single-residue indels and substitu-
tions, and so is roughly the phylogenetic equivalent of a
global alignment algorithm with linear gap penalties.

The EHMM construction algorithm described here
works for any choice of Branch HMM. By suitable
choice of HMM states and transitions, we could (for
example) use a Branch HMM with affine gaps and
‘ragged ends’ (i.e. local alignment), rather than the TKF91
model (which is closer to global alignment with a linear
gap model). At the time of writing, the only EHMM
implemented in Handel is based on the TKF91 model,
as this was the only rate-based model whose finite-
time Branch HMM had been analytically determined.
Recently, we have developed a long indel model allowing
multi-residue insertions and deletions, using a generalised
Branch HMM (Miklos, Lunter & Holmes; in preparation).
A more systematic heuristic for finding a Branch HMM
that approximates a complex evolutionary model is to
simulate a large number of pairwise alignments under
the model, then to fit a Branch HMM to these pairwise
alignments using the Baum–Welch algorithm (Durbin et
al., 1998).

Despite the simplicity of the TKF91 model, it performs
reasonably well at multiple alignment (Holmes and Bruno,
2001), approaching the accuracy of CLUSTALW on some
parts of BAliBase, the test set for which CLUSTALW was
optimised. This benchmarking suggests that the clearest
improvements to Handel involve updating the Branch
HMM to address (e.g.) local alignments, affine gaps, gap-
free blocks and hydrophobic core modeling: there is only
so much accuracy to be gotten from global alignment with
linear gaps. Here, we focus on the general behaviour of
the EHMM rather than on comparative analyses with other
multiple alignment tools.

i151

I.Holmes

root ---*-****-*---*--****-*-**--*-*--*-*--************************-****************

thyg bovin::bal human ---*-****-*---*--****-*-**--*-*--*-*--********************-***-****************

thyg bovin::est1 caebr ---*-****-*---*--****-*-**--*-*--*-*--************************-****************

est1 caebr::crys dicdi ---*-****-*---*--****-*-**--*-*--*-*--************************-****************

thyg bovin SPSVPIATH-GQLLGR-SQAI-Q-VG--T-SW-KPVDQFLGVPYAAPPLGEKRFRAPE-HLN-WTGSWEATKPRARCWQ

bal human ---V-Y-TE-G---G-FVEGVNKKLGLLGDS-VD-I--FKGIPFA-APTKAL--ENPQ-PHPGWQGTLKAKNFKKRCLQ

est1 caebr ---V-VNTNYG---K--VEGF-E-YG--A-A--E-V--FLAIPFAKPPVDNLRFEKPEAPEP-WEDVYQATQFRNDC-T

crys dicdi ---V-LLSD-G---A--IRGT-V-TD--T-H--R-V--FYGIPFARPPIDELRYEDPQPPKP-WSYVRDGTKQRDQCIQ

est1 culpi ESLT-VQTKYG---P--VRGK-RNVSLLG-Q--EYVS-FQGIPYARAPEGELRFKAPVPPQK-WTETLDCTQQCEPCYH

thyg bovin SPSVPIATHGQLLG-RSQAIQVGTSWKPVDQFLGVPYAAPPLGEKRFRAPE-HLNWTGSWEATKPRARCWQPGI---RTPTPPGVSEDCLY

bal human ----VYTEGGFVEGVNKKLGLLG---DSVDIFKGIPFAAPT---KALENPQPHPGWQGTLKAKNFKKRCLQATI---TQDSTYG-DEDCLY

est1 caebr ---VVNTNYGKVEG-----FEYG----AAEVFLAIPFAKPPVDNLRFEKPEAPEPWEDVYQATQFRNDCTPHYRLVAQFSSYSG--EDCLT

crys dicdi ---VLLSD-GAIRG---------TVTDTHRVFYGIPFARPPIDELRYEDPQPPKPWSYVRDGTKQRDQCIQDCKLGKGSCSEVGTSEDCLY

est1 culpi ESLTVQTKYGPVRG-KRNVSLLG---QEYVSFQGIPYARAPEGELRFKAPVPPQKWTETLDCTQQCEPCYHFDR---RLQKIVG-CEDSLK

Fig. 6. Top: Part of a Handel alignment of esterase sequences from BAliBase. Asterisks are Felsenstein wildcards, used when Handel infers
that an ancestral residue existed at a given position but has used Felsenstein’s algorithm to sum out the substitution likelihood (Holmes
and Bruno, 2001). The notation A::B indicates a common ancestor of A and B. For reference, the inferred phylogeny in Newark format
was ((thyg bovin:0.72,bal human:0.69):0.032, (est1 caebr:0.71, crys dicdi:0.70):0.0070, est1 culpi:0.70). Bot-
tom: Part of the BAliBase structural alignment of the same sequences.

We tried three different alignment strategies: progres-
sive, refined alignment (using the Viterbi algorithm) and
resampled alignment (using the Forward algorithm). We
also tried both marginalising and sampling the unobserved
sequences at internal nodes of the tree; in other words, we
tried running the program both with and without Felsen-
stein wildcards. The results of these tests are summarised
in Table 1.

When internal sequences are marginalised, refining the
alignment improves the alignment quality in 57% of the
BAliBase datasets, while resampling the alignment leads
to a further improvement over the refined alignment in
35% of the datasets (with a further 37% of datasets
showing no change). Considering BAliBase as a whole,
resampling leads to a net increase in accuracy of 1% over
refinement.

When we sample internal sequences instead of
marginalising them, refinement leads to worse alignments
in the majority (67%) of cases, although the net loss of
accuracy over all of BAliBase is small (< 1%). When
we resample the alignments, 46% of the datasets show
improved accuracy over the refined alignments, with a fur-
ther 45% showing no change. In general, marginalisation
seems to be an effective strategy: in 88% of the BAliBase
datasets, marginalisation yielded a more accurate multiple
alignment, with a total increase in accuracy of around 9%.
Handel and BAliBase alignments for a family of

acetylcholinesterase-related proteins are shown in Fig-
ure 6. It can be seen that the Handel alignment is
generally more ‘gappy’, an artefact of the TKF91 model.
Handel’s sampling behaviour for this family is illustrated
in Figure 7.

DISCUSSION
We defined a number of new algorithmic concepts
including the Multiple HMM, a hidden Markov model
for multiple sequence alignment; the Branch HMM, a
stochastic transducer modeling the evolution of a single
phylogenetic branch; and the Evolutionary HMM, a
Multiple HMM made by combining Branch HMMs on
a guide tree. We have given algorithms for construction
of and alignment to such models. For a specific Branch
HMM (the TKF91 model) we have implemented these
algorithms and analysed their performance on biological
sequences. Our results suggest alignment resampling
helps avoid local minima especially when unobserved
ancestral sequences are sampled rather than marginalised.
The fully general EHMM construction algorithm is
currently under implementation in our group.

Although the EHMM we have described is normalised
conditional on the root sequence S1, it is possible to
construct an EHMM that is jointly normalised for an
entire sequence set. To do this, we simply take the limit
T2 → ∞; i.e. we let the length of the branch from the
root to the subroot become infinitely long. We then set the
root sequence equal to the empty sequence, S1 = []. The
EHMM then gives a joint probability distribution for the
remaining sequences S2 . . . SN .

It is possible to ‘nest’ one (Evolutionary) Multiple
HMM inside another: given a Multiple HMM, we can
replace each emit state φ with a sub-model constructed
on the set of sequences to which φ emits. This allows, for
example, a version of the TKF91 links model where each
link is itself a miniature TKF91 model. Full exploitation
of such models may, in some cases, demand specialised
dynamic programming algorithms.

i152

Using guide trees in evolutionary HMMs

2200

2300

2400

2500

2600

2700

2800

2900

3000

0 100 200 300 400 500 600 700 800 900

B
A

liB
as

e
ov

er
la

p

Iteration

Marginalised unobserved sequences
Sampled unobserved sequences

Fig. 7. Behaviour of Handel on a dataset of low-identity (<
25%) esterase proteins from BAliBase. The graph shows the
accuracy throughout repeated node and branch resampling (section:
‘The Branch HMM’). The accuracy is measured in the residue-
pair overlap with a structural BAliBase alignment, out of a
maximum of 4407 residue-pairs. Periodically, Handel refines the
alignment by iterating the Viterbi algorithm (appendix: ‘DYNAMIC
PROGRAMMING’) on nodes and branches; this causes the regular
spikes on the graph. In the upper plot, the unobserved sequences
at internal nodes of the tree were marginalised using Felsenstein’s
algorithm (section: ‘Sampling issues’); in the lower plot, these
sequences were sampled.

An obvious adjunct to the EHMM construction algo-
rithm would be an algorithm to construct evolutionary
stochastic context-free grammars (SCFGs) from pairwise
‘Branch SCFGs’. Such an algorithm, the probabilistic
counterpart of Sankoff et al’s algorithm for multiple
sequence alignment and RNA structure prediction (re-
viewed by Durbin et al), would allow the evolutionary
modeling of changes in RNA structure. Given the current
emphasis on comparative genomic analysis, probabilistic
evolutionary methods such as those presented here are
timely and relevant.

ACKNOWLEDGEMENTS
The author acknowledges E.Z.Holmes for graphics sup-
port. This work was supported by EPSRC (code HAMJW)
and MRC (code HAMKA).

REFERENCES
Durbin,R., Eddy,S., Krogh,A. and Mitchison,G. (1998) Biological

Sequence Analysis: Probabilistic Models of Proteins and Nucleic

Acids. Cambridge University Press, Cambridge, UK.
Eskin,E., Grundy,W.N. and Singer,Y. (2000) Protein family

classification using sparse Markov transducers. In Bourne,P.,
Gribskov,M., Altman,R., Jensen,N., Hope,D., Lengauer,T.,
Mitchell,J., Scheeff,E., Smith,C., Strande,S. and Weis-
sig,H. (eds), Proceedings of the Eighth International Con-
ference on Intelligent Systems for Molecular Biology. AAAI
Press, Menlo Park, CA, pp. 134–135.

Friedman,N., Ninio,M., Pe’er,I. and Pupko,T. (2001) A struc-
tural EM algorithm for phylogenetic inference. In Lengauer,T.,
Sankoff,D., Istrail,S., Pevzner,P. and Waterman,M. (eds), Pro-
ceedings of the Fifth Annual International Conference on Com-
putational Biology. Association for Computing Machinery, New
York.

Hein,J., Wiuf,C., Knudsen,B., Moller,M.B. and Wibling,G. (2000)
Statistical alignment: computational properties, homology test-
ing and goodness-of-fit. J. Mol. Biol., 302, 265–279.

Holmes,I. and Bruno,W.J. (2001) Evolutionary HMMs: a Bayesian
approach to multiple alignment. Bioinformatics, 17(9), 803–820.

Holmes,I. and Rubin,G.M. (2002) An expectation maximization
algorithm for training hidden substitution models. J. Mol. Biol.,
317(5), 757–768.

Thompson,J.D., Higgins,D.G. and Gibson,T.J. (1994) CLUSTAL
W: improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, position specific gap
penalties and weight matrix choice. Nucleic Acids Res., 22,
4673–4680.

Thorne,J.L., Kishino,H. and Felsenstein,J. (1991) An evolutionary
model for maximum likelihood alignment of DNA sequences. J.
Mol. Evol., 33, 114–124.

THE COLLAPSED EHMM
The inflated state space has a lot of unnecessary null states
(Fig. 5). We can eliminate many of these by allowing
direct transitions between accessible emit states, as well
as START, END and all-wait states. These states constitute
the collapsed state space "′′ ⊆ ". In this appendix, we
give an algorithm to construct "′′ explicitly. This is the
EHMM construction algorithm that will primarily be used
in practise.

We first suppose that, excluding branch 1 → 2, the
guide tree ϒ is a binary tree. This is without loss of
generality, since we can always convert a non-binary tree
into a binary tree by suitable manipulations.

For a generic BHMM state type X ∈
{wx
M ,

w
D,

x
I,W,S,E

}
:

Let Am (X) be the set of all partial labelings for the
subtree rooted at node m, such that (i) node m is in an
X-state, (ii) no nodes are in I-states.

Let Bm (X) be the set of all partial labelings for the
subtree rooted at node m, such that (i) node m is in an
X-state, (ii) at least one node is in an I-state.

If m is an internal node of ϒ , then let u and v represent
the two child nodes, with u < v. Suppose that U and V are
partial labelings rooted at nodes u and v respectively. Let

i153

I.Holmes

"$X
U
V represent a partial labeling rooted at node m, with

node m itself having type X and with the subtrees rooted at
u and v labeled according to U and V , respectively.

If m is a leaf node of ϒ , then let X represent a partial
labeling of node m, so that the state of node m has type X.

Note that Am

(x
I
)

= Bm

(w
D
)

= Bm (W) = Bm (E) =
∅ ∀m. We construct the remaining Am (X) , Bm (X) recur-
sively. For internal nodes (|D(m)| > 0):

Am

(wx
M

)
=






"$
wx
M

U
V :

U ∈ Au

(
xy
M

)
∪ Au

(x
D
)

,

V ∈ Av

(xz
M

)
∪ Av

(x
D
)

,

y, z ∈ !






Am (W) =
{

"$W
U
V : U ∈ Au (W) ,

V ∈ Av (W)

}

Am

(w
D
)

=
{

"$
w
D

U
V : U ∈ Au (W) ,

V ∈ Av (W)

}

Am (S) =
{

"$S
U
V : U ∈ Au (S) ,

V ∈ Av (S)

}

Am (E) =
{

"$E
U
V : U ∈ Au (E) ,

V ∈ Av (E)

}

Bm (S) =






"$S
U
V :

U ∈ Bu (S) ∪ Bu

(
y
I

)
,

V ∈ Av (W) ,
y ∈ !






∪






"$S
U
V :

U ∈ Au (S) ,

V ∈ Bv (S) ∪ Bv

(z
I
)

,

z ∈ !






Bm

(wx
M

)
=






"$
wx
M

U
V :

U ∈ Bu

(
xy
M

)
∪ Bu

(
y
I

)
,

V ∈ Av (W) ,
y ∈ !






∪






"$
wx
M

U
V :

U ∈ Au

(
xy
M

)
∪ Au

(x
D
)

,

V ∈ Bv

(xz
M

)
∪ Bv

(z
I
)

,

y, z ∈ !






Bm

(x
I
)

=






"$
x
I

U
V :

U ∈ Bu

(
xy
M

)
∪ Bu

(
y
I

)
,

V ∈ Av (W) ,
y ∈ !






∪






"$
x
I

U
V :

U ∈ Au

(
xy
M

)
∪ Au

(x
D
)

,

V ∈ Av

(xz
M

)
∪ Av

(x
D
)

∪Bv

(xz
M

)
∪ Bv

(z
I
)

,

y, z ∈ !






For leaf nodes (D(m) = ∅):

Am (X) =
{ wx

M
}
∀ X ∈ {wx

M ,
w
D,W,S,E : w, x ∈ !}

Bm

(x
I
)

=
{ x

I
}

Bm (S) = ∅ ∀ X ∈ {wx
M ,S : w, x ∈ !}

The collapsed state space is thus

"′′ =
⋃

w,x∈!




⋃

X∈{wx
M ,

w
D,S,E}

A2 (X)



∪




⋃

X∈{wx
M ,

w
D,

x
I,S}

B2 (X)





In the collapsed state space, the likelihood of inflated
paths such as the one shown in Figure 5 are collapsed
into a single ‘effective’ transition probability. Suppose that
φ, φ′ ∈ "′′ are states in the collapsed state space, with
φ = {ψ1 . . . ψN } and φ′ = {ψ ′1 . . . ψ ′N }. Thus ψn is the
Branch HMM state of node n in EHMM state φ, and ψ ′n is
the Branch HMM state of node n in EHMM state φ′.

For the collapsed transition probability t (φ, φ′) to be
nonzero, it is required firstly that either β(φ′) ≥ β(φ) or
β(φ′) ∈ A(β(φ)). That is, the emitter can sweep forward
(in a preorder traversal) or back up (to an ancestor).

FORMAL DEFINITIONS
‘Emissions’: An emission is a vector of sequences E ∈
(!0 ∪ !1)N . A null emission E = []N has En = [] ∀n.
START and END always have null emissions, E(START) =
E(END) = []N . The emit set for a state is defined by
B(φ) = {n : En /= []}.

‘Normalisation’: the set of wait states is "W = {φ ∈ " :
φ /∈ {START,END}, E(φ) = []N } while the set of receive
states is "R = {φ ∈ " : |E(φ)1| = 1} ∪ {END}. The first
requirement of transducers is, for all nonzero transitions
φ, φ′ : t (φ, φ′) > 0, we have φ ∈ "W ⇔ φ′ ∈ "R .
For the second requirement, let "R(ω) = {φ ∈ " :
E(φ)1 = ω} be the set of receive states that absorb
symbol ω. The conditional normalisation requirement for
wait states is

∑
φ′∈"R(ω) t (φ, φ′) = 1 ∀φ ∈ "W , ω ∈ !,

and t (φ,END) = 1 ∀φ ∈ "W . The joint normalisation
requirement for non-wait states is

∑
φ′∈" t (φ, φ′) =

1 ∀φ ∈ ", φ /∈ "W , φ /= END.
‘Normalisation’: χ(ψ) is defined as follows. For w, x ∈

!

χ(ψ) =






S if ψ = SBR
E if ψ = EBR
W if ε(ψ)1 = ε(ψ)2 = [] and ψ /∈ {SBR,EBR}
wx
M if ε(ψ)1 = [w] and ε(ψ)2 = [x]
w
D if ε(ψ)1 = [w] and ε(ψ)2 = []
x
I if ε(ψ)1 = [] and ε(ψ)2 = [x]

i154

Using guide trees in evolutionary HMMs

‘The inflated EHMM’: The active node α(φ) is defined
as follows: let S(φ) = {n : 1 < n ≤ N , χ(ψn) /= W}.
If |S(φ)| > 0 then α(φ) = max(n ∈ S(φ)); otherwise,
α(φ) = 2.

If φ = {ψ1 . . . ψN } and φ′ = {ψ ′1 . . . ψ ′N } are two
EHMM state identifiers with φ′ /= END, then the inflated
transition probability t ′(φ, φ′) is given by

t ′(φ, φ′) = τ(ψa(φ), ψ
′
a(φ)|Ta(φ))

×
∏

n∈D(a(φ))

σ (ψ ′A(n), ψn, ψ
′
n, Tn)

×
∏

n /=a(φ),

n /∈D(a(φ))

δ(ψn, ψ
′
n) (1)

where σ(p′, n, n′, T) is a ‘sync factor’ ensuring that
a node’s state (n) and its parent’s state (p) remain
synchronised (here T is the branch length)

σ(p′, n, n′, T) =






δ(ε(p′)2, ε(n′)1)
τ (n, n′|T) if |ε(p′)2| > 0

δ(n, n′) otherwise.

The transition from φ to END has probability t ′(φ,END) =
δ(a(φ), 2)δ(χ(ψ2),W).

The emitter β(φ) is defined as follows: if the set I(φ) =
{n : ε(ψn)1 = [], ε(ψn)2 /= []} is nonempty, then
β(φ) = max(n ∈ I(φ)); otherwise, β(φ) = 2.

The synchronisation condition requires that ε(ψn)1 =
ε(ψA(n))2 ∀n ∈ D(β(φ)). Synchronisation is clearly a
necessary condition for φ to be an emission state, due
to the ‘sync factor’ σ(. . .) of Equation 1. To prove that
it is also a sufficient condition note that, on exiting the
emission state, either β(φ) or one of its descendants must
change state, destroying synchronisation.

The emit set B(φ) is given by B(φ) = {β(φ)}∪ {n : n ∈
D(β(φ)), |ε(ψn)1| = |ε(ψn)2| = 1}. If φ is synchronised,
the associated emission E(φ) is defined by E(φ)n =
ε(ψn)2 for n ∈ B(φ) and E(φ)n = [] otherwise. If φ is
not synchronised then E(φ) = []N .

ELIMINATING STATES
It is sometimes useful to be able to eliminate some subset
of states from the state space " of an MHMM, retaining
some subset Y ⊂ " and incorporating the likelihood
of all paths through the eliminated states X = Y into
effective transition probabilities between the remaining
states in Y . Conversely, we may want to generate sample
paths through " consistent with a given path through Y .
For example, we often want to remove null states (and
null cycles) from an HMM before dynamic programming,
then restore them after traceback. For the purposes of this
section, we write the transition function as a |"| × |"|
matrix t with entries ti j ≡ t (i, j).

Let yk = 1 if k ∈ Y and 0 if k ∈ X . Suppose that
t = a+b+c+d where a, b, c and d are |"|×|"| matrices
with entries ai j = ti j yi y j , bi j = ti j yi (1 − y j), ci j =
ti j (1− yi)y j and di j = ti j (1− yi)(1− y j). The effective
transition probability qi j between two states i, j ∈ Y
is given by qi j = ai j + ∑

k bikck j + ∑
k,l bikdklcl j +∑

k,l,m bikdkldlmcmj + . . . or, in matrix notation, q =
a +∑∞

n=0 bdnc = a + b(1−d)−1c where 1 is the identity
matrix. Here a describes transitions within Y , while the
summand bdnc describes the probability of making a
transition from Y into the eliminated states X , followed
by n transitions within the eliminated states, and finally a
transition back into Y .

The converse problem is the probabilistic sampling of a
path segment π = [π1, π2 . . . π|π |] ∈ "∗ consistent with
a given transition i → j where i, j ∈ Y . Here π1 = i ,
πn = j and πm ∈ X ∀m : 1 < m < n. To generate this
sample we need to know the probability ri j of all paths
from i ∈ Y to j ∈ X , starting with a transition from Y into
X , and remaining in X until reaching j after any number
of steps. In matrix notation, r = ∑∞

n=0 bdn = b(1−d)−1.
The algorithm for sampling π then uses variables k, l ∈ "
as follows

• Begin by setting k ← j , π ← [j].
• Loop: Sample l ∈ " from the distribution P(l|k, i) =

ril plk/
∑

x∈" rix pxk .

• Set π ← [l] ◦ π and k ← l.

• If k = i , then terminate; otherwise, goto Loop.

This algorithm can be used to sample a path in "
consistent with an observed path in Y , by repeated
application to each transition in the observed path.

Given an effective transition i → j where i, j ∈ Y ,
we may want to compute n(k → l|i → j), the posterior
expected number of null transitions k → l. For this, we
need s = (1 − d)−1c as well as the previously-calculated
r and q. Then the expectation is given by n(k → l|i →
j) = rikdklsl j/qi j . Related expectations are n(i → k|i →
j) = biksk j/qi j and n(l → j |i → j) = rilcl j/qi j .
Finally, the posterior expected number of actual i → j
transitions given an observed effective i → j transition is
ai j/qi j .

DYNAMIC PROGRAMMING
We first introduce some extra notation. For S ∈ !∗ define
the left and right subsequence functions L : !∗×ZZ→ !∗
and R : !∗ × ZZ → !∗ such that L(a ◦ b, |a|) = R(b ◦
a, |a|) = a for a, b ∈ !∗, while L(a, n) = R(a, n) = a
for out-of-range subscripts n > |a|.

For a, b ∈ !∗, define the relation a !b as {(a, b) : ∃c ∈
!∗, a ◦ c = b}, meaning ‘a is a left subsequence of b’.

i155

I.Holmes

The serial concatenation of a sequence of K sequences
[X1, X2 . . . X K] ∈ (!∗)∗ is written©K

k=1 Xk .
Let π = [π1, π2 . . . πK] ∈ "∗ be a path in the state

space, with |π | = K . Define 0(π) = ∏|π |
k=2 t (πk−1, πk)

to be the path product and and G : "∗ → (!∗)N ,
G(π)n = ©|π |

k=1 E(πk)n to be the path emission. Let
1(α, β, X) = {π : π1 = α, π|π | = β, G(π) = X} be the
set of all paths from α to β emitting X, where α, β ∈ "
and X ∈ (!∗)N .

Define the Forward sumF(S) =
∑

π∈1(START,END,S)

0(π).

For models normalised by the criteria of ‘Normalisation’,
F(S) is the likelihood of the sequences S. The Forward
sum is computed by dynamic programming (DP) as
follows.

Let M : (!∗)N → ZZN be a function returning an
N -dimensional vector of sequence lengths (so M(S)n =
|Sn|), let C ∈ ZZN be an N -dimensional vector of cell co-
ordinates and let L : (!∗)N ×ZZN → (!∗)N be a function
returning the left subsequence vector for a given sequence
vector and cell co-ordinates (defined by L(S, C)n =
L(Sn, Cn)). Further, let J : (!∗)N × ZZN → (!0 ∪ !1)N

be a function returning the maximal forward emission into
a cell (defined by J (S, C)n = R(L(S, C)n, 1)). Finally,
let 2 : (!∗)N → {V : V ⊆ "} be a function returning the
set of valid states for a given maximal emission, defined
by 2(X) = {φ : φ ∈ ", E(φ)n ! Xn∀n, 1 ≤ n ≤ N }.

Define the Forward DP matrix

FD P(S, C, φ) =
∑

π∈1(START,φ,L(S,C))

0(π)

Then

FD P(S, C, φ) =
∑

φ′∈"
FD P(S, C−M(E(φ)), φ′)t (φ′, φ)

(2)
if φ ∈ 2(J(S, C)), and 0 otherwise. The boundary

condition is FD P(S, 0,START) = 1. The Forward sum
is F(S) = FD P(S, M(S),END). Resolution of circular
dependencies in (2) is achieved by eliminating null states
as described in ‘ELIMINATING STATES’. The recursion
can be accelerated by tabulating 2 and, of course, FD P .

Define the Viterbi max V(S) = max
π∈1(START,END,S)

0(π).

Again, this is computed using a Viterbi DP matrix

VD P(S, C, φ) = max
π∈1(START,φ,L(S,C))

0(π)

Then

VD P(S, C, φ) = max
φ′∈"

VD P(S, C−M(E(φ)), φ′)t (φ′, φ)

(3)

if φ ∈ 2(J(S, C)), and 0 otherwise, with bound-
ary condition VD P(S, 0,START) = 1. Then V(S) =
VD P(S, M(S),END).

Given a DP matrix and a probabilistic way of tracing
back through its dependencies, we can sample a path
π ∈ 1(START,END, S) via the following traceback
algorithm, using temporary variables C ∈ ZZN and i, j ∈
":

• Begin by setting j ← END, π ← [j], C←M(S).

• Loop: Sample i ∈ " from the distribution ρ(i | j, C)
(to be defined below).

• Set π ← [i] ◦ π , j ← i and C← C−M(E(i)).

• If i = START, then terminate; otherwise, goto Loop.

For Forward traceback, we use

ρ(i | j, C) = FD P(S, C, i)t (i, j)/
∑

k∈"
FD P(S, C, k)t (k, j)

For Viterbi traceback, we use

ρ(i | j, C) = δ(i, argmaxk∈"VD P(S, C, k)t (k, j))

In the case of Forward traceback, the returned path is an
unbiased sample from P(π |S) = 0(π)/F(S); in the case
of Viterbi traceback, the path is the one with the highest
path product.

We can also compute partial derivatives c(S, i, j) =
δ(logF(S))/δ(log t (i, j)), which can be interpreted as
probabilistic ‘counts’ of the number of time transition
i → j was used, using the following Forward-Backward
algorithm. Let R : (!∗)N × ZZN → (!∗)N be a
function returning the right subsequence vector for a given
sequence vector and cell co-ordinates, defined such that
L(S, C)n ◦ R(S, C)n = Sn . Further, let K : (!∗)N ×
ZZN → (!0 ∪ !1)N be a function returning the maximal
backward emission from a cell (defined by K (S, C)n =
L(R(S, C)n, 1)).

Define the Backward DP matrix

BD P(S, C, φ) =
∑

π∈1(φ,END,R(S,C))

0(π)

Then

BD P(S, C, φ) =
∑

φ′∈"
BD P(S, C + M(E(φ)), φ′)t (φ, φ′)

(4)
if φ ∈ 2(K(S, C)), and 0 otherwise, with boundary
condition BD P(S, M(S),END) = 1. The counts c(S, i, j)
are then given by

c(S, i, j) =
M(S)∑

C=0

FD P(S, C, i)t (i, j)BD P(S, C, j)
F(S)

(5)

i156

Using guide trees in evolutionary HMMs

The Baum–Welch training algorithm sets t (i, j) ∝
c(S, i, j) and iterates to convergence (Durbin et al., 1998).
The counts c(S, i, j) can also be used by other flavours of
EM algorithm (Holmes and Rubin, 2002).

The range of C in Equations (2)–(5) is from 0 to
M(S). Note that the mapping from cell co-ordinates C to
sequences S is defined entirely by the left subsequence
vector function L(S, C). This means we can easily restrict
the DP to a subset 1′ ∈ 1 of all paths (e.g. to a slice
of the DP matrix corresponding to a given alignment) by
changing the range of C and the definition of L. Thus,

if A ∈ ((!0 ∪ !1)N ∩ {[]N })∗ is an alignment of S,
i.e. a sequence of non-null emissions [A1, A2 . . . A|A|]
(so (Ak)n is the k’th emission to the n’th sequence)
satisfying ©|A|

k=1(Ak)n = Sn∀1 ≤ n ≤ N , and
H(π) = ©i :E(πi) /=[]N [E(πi)] is the alignment for path π ,
then we can do dynamic programming exclusively over
alignment A, i.e. over the set of paths 1′(α, β, S) = {π :
π ∈ 1(α, β, S), H(π) = A}, simply by using a one-
dimensional cell co-ordinate C ∈ ZZ, 0 ≤ C ≤ |A| and
using L(S, C)n = ©C

k=1(Ak)n for our definition of the
left subsequence vector.

i157

